Logo SMPL
SMPL

Soft matter under confinement

Soft matter under confinement is a growing, interdisciplinary research field with yet unknown basic principles and many similarities with the biological world. Nanoporous hard templates provide a two-dimensionally confined space in which self-organization processes such as crystallization, protein secondary structure formation, mesophase formation and phase separation can be manipulated giving rise to unprecedented confinement-induced morphologies with new and exciting properties. A principal focus of the work is finding the basic underlying principles that give rise to directed self-organization and controlled phase state in a range of soft materials under confinement. This ambitious but realistic approach requires a methodology that includes the synthesis of the hard templates as well as structural, thermodynamic and dynamical characterization in a number of soft materials with different types of interactions. These include crystallizable polymers, amphiphilic molecules, liquid crystals and biopolymers with important potential applications. It further requires the implementation of different but complementary techniques with high spatial and temporal resolution, operating over broad space and time scales. The first results include understanding the role of confinement on the type of nucleation and overall crystallinity (polymeric nanofibers with tunable mechanical, electrical and optical properties), the stability of liquid crystal phases (liquid crystal display industry) and the design of membranes based on the functionality of biopolymers located in nanopores. In addition, we investigate the effect of confinement on ice nucleation within nanopores of self-ordered aloumina.

Collaborators: H. Duran (TOBB, Ankara), M. Steinhart (Univ. Osnabrueck), H.-J. Butt (MPI-P)

Recent publications (2015-2020)

Nano Lett. 2015, 15, pp. 1987-1992.

[1] Y. Suzuki, M. Steinhart, H.-J. Butt, G. Floudas

“Kinetics of ice nucleation confined in nanoporous alumina”

J. Phys. Chem. B 2015, 119, pp. 11960-11966.

[2] Y. Suzuki, M. Steinhart, R. Graf, H.-J. Butt, G. Floudas

“Dynamics of Ice/Water Confined in Nanoporous Alumina”

J. Phys. Chem. B  2015, 119, pp. 14814-14820.

[3] Y. Suzuki, M. Steinhart, M. Kappl, H.-J. Butt, G. Floudas

“Effects of polydispersity, additives, impurities and surfaces on the crystallization of poly(ethylene oxide) (PEO) confined to nanoporous alumina”

Polymer  2016, 99, pp. 273-280.

[4] Y. Yaoi, T. Sakai. M. Steinhart, H-J. Butt, G. Floudas.

“Effect on the Poly(ethylene oxide) Architecture on the Bulk and Confined Crystallization within Nanoporous Alumina”

Macromolecules  2016, 49 (16), pp. 5945-5954.

[5] S. Alexandris, P. Papadopoulos, G. Sakellariou, M. Steinhart, H-J. Butt, G. Floudas.

“Interfacial Energy and Glass Temperature of Polymers Confined to Nanoporous Alumina”

Macromolecules  2016, 49 (19), pp. 7400-7414.

[6] Y. Yao, S. P. Ruckdeschel, R. Graf, H-J. Butt, M. Retsch, G. Floudas.

“Homogeneous Nucleation of Ice Confined in Hollow Silica Spheres”

J. Phys. Chem. B  2017, 121, pp. 306-313.

[7] Y. Yao, S. Alexandris, F. Henrich, G. Auernhammer, M. Steinhart, H-J. Butt, G. Floudas.

“Complex Dynamics of Capillary Imbibition of Poly(ethylene oxide) Melts in Naoporous Alumina”

J. Chem. Phys 2017, 146, pp. 203320.

[8] Y. Yao,  Y. Suzuki, J. Seiwert, M. Steinhart, H. Frey, H-J. Butt, G. Floudas.

“Capillary Imbibition, Crystallization and Local Dynamics of Hyperbranched Poly(ethylene oxide) Confined to Nanoporous Alumina”

Macromolecules 2017, 50 (21), pp. 8755-8764.

[9] Y. Yao,  H-J. Butt, J. Zhou, M. Doi, G. Floudas.

“Capillary Imbibition of Polymer Mixtures in Nanopores”

Macromolecules 2018, 51 (8), pp. 3059-3065.

[10] Y. Yao,  H-J. Butt, J. Zhou, M. Doi, G. Floudas.

“Theory on Capillary Filling of Polymer Melts in Nanopores”

Macromol. Rapid Commun. 2018, 180087 1-5.

[11] Y. Yang,  V. Fella, W. Huang, K. A. I. Zhang, K. Landfester, H-J. Butt, M. Vogel, G. Floudas.

“Crystallization and Dynamics of Water Confined in Model Mesoporous Silica Particles: Two Ice Nuclei and Two Fractions of Water”

Langmuir. 2019, 35, 5890-5901.

[12] C. Politidis, S. Alexandris, G. Sakelariou, M. Steinhart, G. Floudas. 

“Dynamics of Entangled cis-1,4-Polyisoprene Confined to Nanoporous Alumina”

Macromolecules 2019, 52 (11), 4185-4195.

[13] L. G. Cencha, P. Huber, M. Kappl, G. Floudas, M. Steinhart, C. L. A. Berli, R. Urteaga.

“Nondestructive High-Throughput Screening of Nanopore Geometry in Porous Membranes by Imbibition”

Appl. Phys. Lett. 2019, 115, 113701.

[14] C-H. Tu, M. Steinhart, H-J. Butt, G. Floudas.

“In Situ Monitoring the Imbibition of Poly(n-butyl methacrylates) in Nanoporous Alumina by Dielectric Spectroscopy”

Macromolecules 2019, 52 (21), 8167-8176.

[15] A. Selevou, G. Papamokos, T. Yildirim, H. Duran, M. Steinhart, G. Floudas. 

“Eutectic Liquid Crystal Mixture E7 in Nanoporous Alumina. Effects of Confinement on the Thermal and Concentration Fluctuation”

RSV Adv. 2019, 9, 37846-37857.

Liquid Crystals: self-assembly and dynamics

Discotic liquid crystals (DLC), consisting of rigid disk-shaped aromatic cores and disordered alkyl substituents tend to organize into columnar supramolecular structures. Their self-assembly is driven by noncovalent intermolecular interactions favoring the π-stacking of aromatic cores and the unfavorable interactions between the cores and the alkyl chains leading to nanophase separation. Applications of DLC as electronic devices rely on the optimal stacking of the aromatic cores that allow for charge carrier mobility along the columnar axis (i.e., molecular wires). Recently the controlled synthesis of DLC bearing large aromatic cores, such as hexa-peri-hexabenzocoronenes (HBC) (Group of Prof. K. Müllen, MPI-P), allowed extensive investi­ga­tions of the self-assembly and electronic properties. Recently, with the aid of pressure, the complete phase diagrams of two HBCs were constructed that in addition to the two equilibrium phases contain also a kinetically arrested (i.e., glassy) phase. Other studies emphasized the anisotropy in the thermal expansion of DLCs. The latter reflects the anisotropy in the molecular interactions; intra vs. inter-columnar, originating from π-π stacking and van der Waals interactions, respectively. Recently, HBCs were shown to have large thermal expansion within the Colh phase but thermal contraction within the Cr phase. The latter originates from the increasing disk tilt with respect to the columnar axis and reflects the tendency towards increasing the packing density within the Cr phase. With respect to the molecular dynamics, earlier investigations identified the main α-process as reflecting the axial motion of disks around the columnar axis as well as regions of high and low packing density along the columns, first described by de Gennes as pincements. Recent concerted efforts by site-specific NMR (Group of Prof. H. Spiess, MPI-P) and dielectric spectroscopy (DS) in addition to the “fast” axial process associated with in- and out-of plane motions, identified slower dynamics reflecting a collective re-organization of disks within the columns that result in the complete relaxation of the dipole moment.

Collaborators: K. Müllen (MPI-P), H.W. Spiess (MPI-P), Y.H. Geerts (ULB, Belgium)

Recent publications (2011-2016)

[1] N. Tasios, C. Grigoriadis, M.R. Hansen, H. Wonneberger, C. Li, H.W. Spiess, K. Müllen, G. Floudas, 

“Self-assembly, dynamics and phase transformation kinetics of donor-acceptor substituted perylene derivatives”, 

J. Am. Chem. Soc.  132, 7478, 2010

[2]  C. Grigoriadis, N. Haase, H.-J. Butt, K. Müllen, G. Floudas, 

“To tilt or not to tilt? Kinetics of structure formation in a discotic liquid crystal”,

 Soft Matter, 7, 4680, 2011.

[3] N. Haase, C. Grigoriadis, H.-J. Butt, K. Müllen, G. Floudas,

 “Effect of dipole functionalization on the thermodynamics and dynamics of discotic liquid crystals”,

 J. Phys. Chem. B  115, 5807, 2011.

[4] C. Grigoriadis, H. Duran, M. Steinhart, M. Kappl, H.-J. Butt, G. Floudas, 

“Suppression of phase transitions in a confined liquid crystal”,

 ACS Nano 11, 9208, 2011.

[5] M. R. Hansen, X. Feng, V. Macho, K. Müllen, H.W. Spiess, and G. Floudas, 

“Fast and Slow Dynamics in a Discotic Liquid Crystal with Regions of Columnar Order and Disorder”,

 Phys. Rev. Lett.,  107, 257801, 2011.

[6] P. Papadopoulos, C. Grigoriadis, N. Haase, H.-J. Butt, K. Müllen and G. Floudas, “

Dynamics of structure formation in a Discotic Liquid Crystal by infrared spectroscopy and related techniques”,

 J. Phys. Chem. B,   115, 14919, 2011.

[7] L. Chen, X. Dou, W. Pisula, X. Yang, D. Wu, G. Floudas, X. Feng, K. Müllen,

 “Discotic hexa-peri-hexabenzocoronenes with strong dipole: synthesis, self-assembly and dynamic studies”,

 Chem. Commun. 48, 702, 2012.

[8] C. Grigoriadis, C. Niebel, C. Ruzié, Y. H. Geerts and G. Floudas

“Order, viscoelastic and dielectric properties of symmetric and asymmetric alkyl[1]benzothieno[3,2-b][1]benzothiophenes”

 J. Phys. Chem. B 118, 1443-1451, 2014.

Biopolymers: Polypeptide Self-assembly and dynamics

This part refers to results from recent efforts on understanding the hierarchical self-assembly and dynamics of polypeptides with the aid of different NMR techniques (group of Prof. H.W. Spiess), X-ray scattering and dielectric spectroscopy. The concerted application of these techniques shed light to the origin of glass transition, the persistence of the α-helical peptide secondary motif and the effects of topology and packing on the type and persistence of secondary structures. With respect to the freezing of the dynamics at the liquid-to-glass temperature it was found that the origin of this effect is a network of broken hydrogen bonds. The presence of defected hydrogen bonded regions reduces the persistence length of α-helices. Block copolypeptides provide means of manipulating both the type and persistence of peptide secondary structures.

Collaborators: H. Iatrou (Univ. of Athens), R. Graf, H.W. Spiess (MPI-P)

Recent representative publications (2010-2013)

[1] A. Gitsas, G. Floudas, M. Mondeshki, I. Lieberwirth, H.W. Spiess, H. Iatrou, N. Hadjichristidis,

 “Hierarchical self-assembly and dynamics of a miktoarm star chimera composed of poly(γ-benzyl-L-glutamate), polystyrene and polyisoprene”,

 Macromolecules 43, 1874, 2010.

[2] M. Mondeshki, H.W. Spiess, T. Aliferis, H. Iatrou, N. Hadjichristidis, G. Floudas, 

“Hierarchical self-assembly in diblock copolypeptides of poly(γ-benzyl-L-glutamate) with Poly(L-leucine) and poly(O-benzyl-L-tyrosine)”, 

Europ. Polymer Journal  2011.

[3] R. Graf, H. W. Spiess, G. Floudas, H.-J. Butt, M. Gkikas, H. Iatrou, 

“Conformational transitions of Poly(L-proline) in copolypeptides with Poly(γ-benzyl-L-glutamate) induced by packing”, 

Macromolecules 45, 9326, 2012.

Nanostructured polymers and Copolymers

Soft matter is characterized by subtle forces and weak interactions, such as hydrogen bonds, van der Waals forces and π-π interactions that give rise to a complex hierarchy of organization. In addition, partially fluorinated compounds can enhance the self-assembly through the fluorophobic effect. Herein we explore the self-assembly in a range of materials possessing different interactions.

 Collaborators: K. Matyjaszewski (CMU), K. Müllen (MPI-P)

Recent representative publications (2015-2020)

[1] J. Wudarczyk, G. Papamokos, V. Margaritis, D. Schollmeyer, F. Hinkel, M. Baumgarten, G. Floudas and K. Müllen*

“Hexasubstituted Benzenes Bearing Ultra-Strong Dipole Moments”

Angew. Chem. Int. Ed. 55, 3220-3223, 2016.

[2] S. Alexandris, A. Franczyk, G. Papamokos, B. Marciniec,R. Graf, R., K. Matyjaszewski, K. Koynov, G. Floudas.

“Dynamic Heterogeneity in Random Copolymers of Polymethacrylates Bearing Different Polyhedral Oligomeric Silsesquioxane Moieteis (POSS”

Macromolecules 2017, 50 (10), pp. 4043-4053. 

[3] J. Wudarczyk G. Papamokos, T. Marszalek, T. Nevolianis, D. Schollmeyer, W. Pisula, G. Floudas, M.Baumgarten, K. Müllen. 

“Dicyanobenzothiadiazole Derivatives Possessing Switchable Dielectric Permittivities”

 

ACS Appl. Mater. Interfaces 2017, 9 (24), pp. 20527-20535.

[4] M. Steube, T. Johann, E. Galanos, M. Appold, C. Rüttiger, M. Mezger, M. Gallei, A. H. E. Müller, G. Floudas, H. Frey.

“Isoprene/Styrene Tapered Multiblock Copolymers with up to Ten Blocks: Synthesis, Phase Behavior, Order, and Mechanical Properties”

Macromolecules 2018, 51 (24), pp. 10246-410258. 

[5] G. Papamokos, J. Wundarczyk, R. Graf, D. Schollmeyer, M. Baumgarten, K. Müllen, G. Floudas.

“Dipolar Relaxation in Functionalized Poly-p-phenylenes Bearing Ultrastrong Perpendicular to the Backbones”

Macromolecules 2018, 51 (9), pp. 3330-3339. 

[6] E. Grune, J. Bareuther, J. Blankenberg,M. Appold, L. Shaw, A. H. E. Müller, G. Floudas, L. R. Hutchings, M.  Gallei, H. Frey.

“Isoprene/Styrene Tapered Multiblock Copolymers with up to Ten Blocks: Synthesis, Phase Behavior, Order, and Mechanical Properties”

Polym. Chem. 2019, 10, 1213-1220. 

[7] E. Galanos, E. Grune, C. Wahlen, A. H. E. Müller, M. Appold, M. Gallei, H. Frey, G. Floudas. 

“Tapered Multiblock Copolymers Based on Isoprene and 4‑Methylstyrene: Influence of the Tapered Interface on the SelfAssembly and Thermomechanical Properties”

Macromolecules 2019, 52 (4), 1577-1588. 

[8] Ch. Livitsanou,M. Steube, T. Johann, H. Frey, G. Floudas.

“Local and Subchain Relaxation of Polyisoprene in Multiblock Copolymers with a Tapered Interface”

Macromolecules 2020, 53, 3042-3051. 

[9]  P. von Tiedemann, J. Yan, R.D. Barent, R.J. Spontak, G. Floudas, H. Frey, R.A. Register.

“Tapered Multiblock Star Copolymers: Synthesis, Selective Hydrogenation and Properties”

Macromolecules 2020, 53, 4422-4434. 

[10]  M. Steube, T. Johann, H. Hübner, M. Koch, T. Dinh, M. Gallei,G. Floudas, H. Frey, A.H.E. Müller. 

“Tetrahydrofuran: more than a “randomizer” in the living anionic copolymerizaton of styrene and isoprene: kinetics, microstructures, morphologies and mechanical properties”

Macromolecules 2020. (https://doi.org/10.1021/acs.macromol.oco1022)

 [11] M.M. Elmahdy, D. Gournis, A. Ladavos,Ch. Spanos,G. Floudas.

“H-Shaped Copolymer of Polyethyne and Poly(ethylene oxide) under Severe Confinement :Phase State and Dynamics”

Langmuir 2020, 36, 4261-4271. 

 

 

 

Ionic systems – relating conductivity to structure

Liquid based lithium (Li) batteries dominate the current market. However, concerns about safety hazards as well as limited temperature range of operation and electrode corrosion has fostered research in all-solid-state recharchable Li batteries. Solid state batteries offer unique opportunities for greatly increased cycle life, safety and energy density. Polymeric electrolyte materials have been investigated for the past 25 years as promising materials for electrochemical device applications including high energy density rechargeable batteries, fuel cells, supercapacitors, electrochromic displays, etc. A reliable device, requires polymer electrolytes that combine high ionic conductivity at ambient temperature (σ>10-4 S/cm), high ionic transference number (preferably cationic), mechanical stability, chemical, thermal and electrochemical stability and compatibility with the electrode materials. Although major research has been conducted on SPEs, the phenomenon of ion transport is not completely understood mainly because charge transport is intimately connected to a number of structural features encountered in these systems [2].

Collaborators: S. Pispas (HRF, Athens), K. Müllen (MPI-P), H.-J. Butt (MPI-P)

Recent publications (2015-2020)

[1] G. Zardalidis, E.F. Ioannou, K.D. Gatsouli, S. Pispas, E.I. Kamitsos, and G. Floudas

“Ionic Conductivity and Self-assembly in Poly(isoprene-b-ethylene oxide) Electrolytes doped with LiTf and EMITf”

Macromolecules 48, 1473-1482, 2015.

[2] G. Zardalidis, K. Gatsouli, S. Pispas, M. Mezger, and G. Floudas

Ionic Conductivity, Self-Assembly, and Viscoelasticity in Poly(styrene-b-ethylene oxide) Electrolytes Doped with LiTf

Macromolecules, 48, 7164–7171, 2015.

[3] G. Zardalidis, A. Pipertzis, G. Mountrichas, S. Pispas, M. Mezger, G. Floudas. 

“Effect of Polymer Architecture on the Ionic Conductivity. Dendely Grafted Poly(ethylene oxide) Brushes Doped with LiTf

 Macromolecules, 2016, 49 (7), pp. 2679-2687.

[4] A. Pipertzis, G. Zardalidis, K. Wunderlich, M. Klapper, K. Müllen, G. Floudas.

“Ionic Conduction in Poly(ethylene glycol)-Functionalized Hexa-peri-hexabenzocoronene Amphiphiles

 Macromolecules, 2017, 50 (5), pp. 1981-1990.

[5] A. Pipertzis, M. Mühlinghaous, M. Mezger, U. Scherf, G. Floudas. 

Polymerized Ionic Liquids with Polythiophene Backbones: Self-Assembly, Thermal Properties, and Ion Conduction

 Macromolecules, 2018, 51 (16), pp. 6440-6450.

[6] M. M. Abolhasani, M. Naebe, K. Shirvanimoghaddam, H. Fashandi, H. Khayyam, M. Joordens, A. Pipertzis, S. Anwar, R. Berger, G. Floudas, J. Michels, K. Asadi.

Thermodynamic Approach to Tailor Porosity in Piezoelectric Polymer Fibers for Application in Nanogenerators

 Nano Energy, 2019, 62, pp. 594-600.

[7] A. Pipertzis, G. Papamokos, M. Muhlinghaus, M. Mezger, U. Scherf, G. Floudas.

What Determines the Glass Temperature and Dc-Conductivity in Imidazolium Polymerized Ionic Liquids with a Polythiophene Backbone?

 Macromolecules, 2020, 53, pp. 3535-3550.

Organic Photovoltaics: relating structure to the photo-physical properties

Organic photovoltaic (OPV) devices are gaining increasing attention due to their high potential for achieving high power conversion efficiencies with a low cost per Watt ratios. The central concept in OPV devices is the utilization of photoactive layers of bulk heterojunctions. These are layers comprising polymeric electron donors mixed with fullerene derivatives that act as electron acceptors that phase separate forming networks. Exciton dissociation and charge photogeneration in the presence of such networks produced power conversion efficiencies (PCE) of up to 10% under sunlight. Inherent to the design of optimal bulk heterojunctions is the control over the relevant donor/acceptor length scale and overall blend morphology. Despite the range of applications there is little knowledge on how the blend morphology and the organization within the different phases affect the photo-physical properties.

 

Collaborators: P. E. Keivanidis (IIT, Milan)

Recent  publications (2015-2020)

[1] E. Aluicio-Sarduy, R. Singh, Z. Kan, T.Ye, A. Baidak, A. Calloni, G. Berti­, L. Duò­, A. Iosifidis, S. Beaupré, M. Leclerc, H.-J. Butt, G. Floudas, P. E. Keivanidis  

“Elucidating the impact of structural order and device architecture on the performance of perylene diimide solar cells”

ACS Applied Materials & Interfaces 2015,  7, 8687-8698.

[2] R. Singh, R. Shivanna, A. Iosifidis, H.-J. Butt, G. Floudas, K. S. Narayan, P. E. Keivanidis

“Charge versus Energy Transfer Effects in High-Performance Perylene-diimide Photovoltaic Blend Films”

ACS Applied Materials & Interfaces 2015,  7, 24876-24886.

[3]  P.E. Keivanidis,G. Itskos, Z.  Kan, E. Aluicio-Sarduy, H. Goudarzi,  V. Kamm, F. Laquai, W. Zhang, C. Brabec, G. Floudas, I. McCulloch.

“Afterglow Effects as a Tool to Screen Emissive Nongeminate Charge Recombination Processes in Organic Photovoltaic Composites”

ACS Applied Materilas  & Interfaces 2020, 12, 2695-2707.

[4]  S. Aivali, Ch. Anastasopoulos, A. K. Andreopoulou, A. Pipertzis, G. Floudas, J. K. Kalitsis..

“Rigid-Flexible” approach for processable perylene diimide-based polymers: Influence of the specific architecture on the morphological, dielectric, optical and electronic properties”

J. Phys. Chem. B 2020, 124, 5079-5090.

 

Polymer Blends

Thermodynamically miscible polymer blends show two glass temperatures that reflect the freezing of the component's segmental dynamics. A closely related issue is that of dynamic heterogeneity in miscible polymer blends. Dynamic heterogeneity requires a large disparity in the glass temperatures of the parent homopolymers. However such polymer mixtures are usually composed from monomers of different polarity and/or rigidity that tend to phase separate. Recently we have followed a different strategy by exploring mixtures of a homopolymer with its oligomers through a combined approach that involves multi-scale simulation methods with experiments (dielectric spectroscopy). This system exhibits the larger possible dynamic asymmetry, and at the same time, possesses the highest possible miscibility. By employing the different methods we cover about 12 orders of magnitude in time, and we are able to show [3] that a single intra-molecular length scale does not suffice to describe the slower segmental dynamics contrary to current theories.

Collaborators: V.A. Harmandaris (Univ. of Crete), K. Kremer (MPI-P), K. Koynov (MPI-P)

Recent representative publications (2011-2016)

[1] V.A. Harmandaris, K. Kremer, and G. Floudas

“Dynamic Heterogeneity in Fully Miscible Blends of Polystyrene with Oligostyrene”, 

Phys. Rev. Lett. 110, 165701, 2013.

[2] T.P. Corrales, D. Laroze, G. Zardalidis, G. Floudas, H.-J. Butt, M.Kappl,

“Dynamic Heterogeneity and Phase Separation Kinetics in Miscible Poly(vinyl acetate)/Poly(ethylene oxide) Blends by Local Dielectric Spectroscopy”, 

Macromolecules 46, 7458, 2013.

[3] N. Poulopoulou, N. Kasmi, D. N. Bikiaris, D. G. Papageorgiou, G. Floudas, G. Z. Papageorgiou.

“Susstainable Polymers from Renewable Resources: Polymer Blends of Furan-Based Polyesters”, 

Macromol. Mater. Eng. 2018, 303 (8), 1800153 1-8.

[4] N. Poulopoulou, A. Pipertzis, N. Kasmi, D. N. Bikiaris, D. G. Papageorgiou, G. Floudas, G. Z. Papageorgiou.

“Green Polymeric Materials: On the Dynamic Homogeneity and Miscibility of Furan-based Polymer Blends”, 

Polymer 2019, 174), 187-199.

Glass “transition” and heterogeneity

The origin of the liquid-to-glass “transition” and the nature of the glassy state is one of the 100 "what don't we know" questions posed by Science at its 125 years birthday. The combination of ansamble average techniques with single-molecule spectroscopy has shed more light in this problem [4]. In addition, the combination of dielectric spectroscopy with molecular simulations as a function of temperature and pressure is a powerful tool.

Collaborators: K. Matyjaszewski (CMU), J. Hofkens (KUL), V. Harmandaris (Univ. of Crete)

Recent publications (2011-2016)

[1] P. Panagos, G. Floudas  

“Dynamics of poly(propyl methacrylate) as a function of temperature and pressure”

J. Non.-Cryst. Solids 2015,  407, 184-189.

[2] S. Alexandris, A. Franczyk, G. Papamokos, B. Marciniec, K. Matjaszewski, K. Koynov, M. Mezger, G. Floudas

 “Polymethacrylates with polyhedral oligomeric silsesquioxane (POSS) moieties: influence of spacer length on packing, thermodynamics, and dynamics”

Macromolecules 2015, 48, 3376-3385.

[3] A. Aluculesei, A. Pipertzis, V.A. Piunova, G.M. Miyake, G. Floudas, G. Fytas, R.H. Grubbs  

“Thermomechanical behavior and local dynamics of dendronized block copolymers and constituent homopolymers”

Macromolecules 2015, 48, 4142-4150.

[4] T. Dimitriadis, D. N. Bikiaris, G. Z. Papageorgiou, G. Floudas. 

“Molecular Dynamics of Poly(ethylene - 2,5 - furonoate) (PEF) as a function of the degree of Crystallinity by Dielectric Spectroscopy and Calorimetry”

Macromol. Chem. Phys. 2016, 217, pp. 2056-2062.

[5] A. Pipertzis, A. Hess, P. Weis, G. Papamokos, K. Koynov, S. Wu, G. Floudas. 

“Multiple Segmental Processe in Polymers with cis and trans Stereoregular Configurations”

ACS Macro Lett. 2018, 7 (1), pp. 11-15.

[6] A. Pipertzis, Md. D. Hossain, M. J. Monteiro, G. Floudas. 

“Segmental Dynamics in Multicyclic Polystyrenes”

Macromolecules 2018, 51 (4), pp. 1488-1497.

[6] M. Hesami, W. Steffen, H-J. Butt, G. Floudas, K. Koynov. 

“Molecular Probe Diffusion in Thin Polymer Films: Evidence for a Layer with Enhanced Mobility Far above the Glass Temperature”

ACS Macro Lett. 2018, 7 (4), pp. 425-430.

[6] M. Mauri, G. Floudas, R. Simonuti. 

“Local Order and Dynamics of Nanoconstrained Ethylene-Butylene Chain Segments in SEBS”

Polymers 2018, 10, pp. 655.

[6] G. Papamokos, T. Dimitriadis, D. N. Bikiaris, G. Z. Papageorgiou, G. Floudas. 

“Chain Conformation, Molecular Dynamics, and Thermal Properties of Poly(n-methylene 2,5-furanoates) as a Function of Methylene Unit Sequence Length”

Macromolecules 2019, 52 (17), 6533-6546.

[7] S. Constanzo, L. Scherz, G. Floudas, R. Pasquino, M. Kröger, A. D. Schlüter, D. Vlassopoulos. 

“Hybrid Dendronized Polymers as Molecular Objects: Viscoelastic Properties in the Melt”

Macromolecules 2019, 52 (19), 7331-7342.