Ionic systems – relating conductivity to structure

Liquid based lithium (Li) batteries dominate the current market. However, concerns about safety hazards as well as limited temperature range of operation and electrode corrosion has fostered research in all-solid-state recharchable Li batteries. Solid state batteries offer unique opportunities for greatly increased cycle life, safety and energy density. Polymeric electrolyte materials have been investigated for the past 25 years as promising materials for electrochemical device applications including high energy density rechargeable batteries, fuel cells, supercapacitors, electrochromic displays, etc. A reliable device, requires polymer electrolytes that combine high ionic conductivity at ambient temperature (σ>10-4 S/cm), high ionic transference number (preferably cationic), mechanical stability, chemical, thermal and electrochemical stability and compatibility with the electrode materials. Although major research has been conducted on SPEs, the phenomenon of ion transport is not completely understood mainly because charge transport is intimately connected to a number of structural features encountered in these systems [2].

Collaborators: S. Pispas (HRF, Athens), K. Müllen (MPI-P), H.-J. Butt (MPI-P)

Recent publications (2015-2020)

[1] G. Zardalidis, E.F. Ioannou, K.D. Gatsouli, S. Pispas, E.I. Kamitsos, and G. Floudas

“Ionic Conductivity and Self-assembly in Poly(isoprene-b-ethylene oxide) Electrolytes doped with LiTf and EMITf”

Macromolecules 48, 1473-1482, 2015.

[2] G. Zardalidis, K. Gatsouli, S. Pispas, M. Mezger, and G. Floudas

Ionic Conductivity, Self-Assembly, and Viscoelasticity in Poly(styrene-b-ethylene oxide) Electrolytes Doped with LiTf

Macromolecules, 48, 7164–7171, 2015.

[3] G. Zardalidis, A. Pipertzis, G. Mountrichas, S. Pispas, M. Mezger, G. Floudas. 

“Effect of Polymer Architecture on the Ionic Conductivity. Dendely Grafted Poly(ethylene oxide) Brushes Doped with LiTf

 Macromolecules, 2016, 49 (7), pp. 2679-2687.

[4] A. Pipertzis, G. Zardalidis, K. Wunderlich, M. Klapper, K. Müllen, G. Floudas.

“Ionic Conduction in Poly(ethylene glycol)-Functionalized Hexa-peri-hexabenzocoronene Amphiphiles

 Macromolecules, 2017, 50 (5), pp. 1981-1990.

[5] A. Pipertzis, M. Mühlinghaous, M. Mezger, U. Scherf, G. Floudas. 

Polymerized Ionic Liquids with Polythiophene Backbones: Self-Assembly, Thermal Properties, and Ion Conduction

 Macromolecules, 2018, 51 (16), pp. 6440-6450.

[6] M. M. Abolhasani, M. Naebe, K. Shirvanimoghaddam, H. Fashandi, H. Khayyam, M. Joordens, A. Pipertzis, S. Anwar, R. Berger, G. Floudas, J. Michels, K. Asadi.

Thermodynamic Approach to Tailor Porosity in Piezoelectric Polymer Fibers for Application in Nanogenerators

 Nano Energy, 2019, 62, pp. 594-600.

[7] A. Pipertzis, G. Papamokos, M. Muhlinghaus, M. Mezger, U. Scherf, G. Floudas.

What Determines the Glass Temperature and Dc-Conductivity in Imidazolium Polymerized Ionic Liquids with a Polythiophene Backbone?

 Macromolecules, 2020, 53, pp. 3535-3550.