Soft matter under confinement

Soft matter under confinement is a growing, interdisciplinary research field with yet unknown basic principles and many similarities with the biological world. Nanoporous hard templates provide a two-dimensionally confined space in which self-organization processes such as crystallization, protein secondary structure formation, mesophase formation and phase separation can be manipulated giving rise to unprecedented confinement-induced morphologies with new and exciting properties. A principal focus of the work is finding the basic underlying principles that give rise to directed self-organization and controlled phase state in a range of soft materials under confinement. This ambitious but realistic approach requires a methodology that includes the synthesis of the hard templates as well as structural, thermodynamic and dynamical characterization in a number of soft materials with different types of interactions. These include crystallizable polymers, amphiphilic molecules, liquid crystals and biopolymers with important potential applications. It further requires the implementation of different but complementary techniques with high spatial and temporal resolution, operating over broad space and time scales. The first results include understanding the role of confinement on the type of nucleation and overall crystallinity (polymeric nanofibers with tunable mechanical, electrical and optical properties), the stability of liquid crystal phases (liquid crystal display industry) and the design of membranes based on the functionality of biopolymers located in nanopores. In addition, we investigate the effect of confinement on ice nucleation within nanopores of self-ordered aloumina.

Collaborators: H. Duran (TOBB, Ankara), M. Steinhart (Univ. Osnabrueck), H.-J. Butt (MPI-P)

Recent publications (2015-2020)

Nano Lett. 2015, 15, pp. 1987-1992.

[1] Y. Suzuki, M. Steinhart, H.-J. Butt, G. Floudas

“Kinetics of ice nucleation confined in nanoporous alumina”

J. Phys. Chem. B 2015, 119, pp. 11960-11966.

[2] Y. Suzuki, M. Steinhart, R. Graf, H.-J. Butt, G. Floudas

“Dynamics of Ice/Water Confined in Nanoporous Alumina”

J. Phys. Chem. B  2015, 119, pp. 14814-14820.

[3] Y. Suzuki, M. Steinhart, M. Kappl, H.-J. Butt, G. Floudas

“Effects of polydispersity, additives, impurities and surfaces on the crystallization of poly(ethylene oxide) (PEO) confined to nanoporous alumina”

Polymer  2016, 99, pp. 273-280.

[4] Y. Yaoi, T. Sakai. M. Steinhart, H-J. Butt, G. Floudas.

“Effect on the Poly(ethylene oxide) Architecture on the Bulk and Confined Crystallization within Nanoporous Alumina”

Macromolecules  2016, 49 (16), pp. 5945-5954.

[5] S. Alexandris, P. Papadopoulos, G. Sakellariou, M. Steinhart, H-J. Butt, G. Floudas.

“Interfacial Energy and Glass Temperature of Polymers Confined to Nanoporous Alumina”

Macromolecules  2016, 49 (19), pp. 7400-7414.

[6] Y. Yao, S. P. Ruckdeschel, R. Graf, H-J. Butt, M. Retsch, G. Floudas.

“Homogeneous Nucleation of Ice Confined in Hollow Silica Spheres”

J. Phys. Chem. B  2017, 121, pp. 306-313.

[7] Y. Yao, S. Alexandris, F. Henrich, G. Auernhammer, M. Steinhart, H-J. Butt, G. Floudas.

“Complex Dynamics of Capillary Imbibition of Poly(ethylene oxide) Melts in Naoporous Alumina”

J. Chem. Phys 2017, 146, pp. 203320.

[8] Y. Yao,  Y. Suzuki, J. Seiwert, M. Steinhart, H. Frey, H-J. Butt, G. Floudas.

“Capillary Imbibition, Crystallization and Local Dynamics of Hyperbranched Poly(ethylene oxide) Confined to Nanoporous Alumina”

Macromolecules 2017, 50 (21), pp. 8755-8764.

[9] Y. Yao,  H-J. Butt, J. Zhou, M. Doi, G. Floudas.

“Capillary Imbibition of Polymer Mixtures in Nanopores”

Macromolecules 2018, 51 (8), pp. 3059-3065.

[10] Y. Yao,  H-J. Butt, J. Zhou, M. Doi, G. Floudas.

“Theory on Capillary Filling of Polymer Melts in Nanopores”

Macromol. Rapid Commun. 2018, 180087 1-5.

[11] Y. Yang,  V. Fella, W. Huang, K. A. I. Zhang, K. Landfester, H-J. Butt, M. Vogel, G. Floudas.

“Crystallization and Dynamics of Water Confined in Model Mesoporous Silica Particles: Two Ice Nuclei and Two Fractions of Water”

Langmuir. 2019, 35, 5890-5901.

[12] C. Politidis, S. Alexandris, G. Sakelariou, M. Steinhart, G. Floudas. 

“Dynamics of Entangled cis-1,4-Polyisoprene Confined to Nanoporous Alumina”

Macromolecules 2019, 52 (11), 4185-4195.

[13] L. G. Cencha, P. Huber, M. Kappl, G. Floudas, M. Steinhart, C. L. A. Berli, R. Urteaga.

“Nondestructive High-Throughput Screening of Nanopore Geometry in Porous Membranes by Imbibition”

Appl. Phys. Lett. 2019, 115, 113701.

[14] C-H. Tu, M. Steinhart, H-J. Butt, G. Floudas.

“In Situ Monitoring the Imbibition of Poly(n-butyl methacrylates) in Nanoporous Alumina by Dielectric Spectroscopy”

Macromolecules 2019, 52 (21), 8167-8176.

[15] A. Selevou, G. Papamokos, T. Yildirim, H. Duran, M. Steinhart, G. Floudas. 

“Eutectic Liquid Crystal Mixture E7 in Nanoporous Alumina. Effects of Confinement on the Thermal and Concentration Fluctuation”

RSV Adv. 2019, 9, 37846-37857.